
Increased capabilities,
architectural compatibility, and
clearly defined interfaces were
the chief architectural goals of
Zilog's new Z8000 microprocessor
family. Here is an account
of how those goals were met
for two members of that family-
the Z8000 CPU and the MMU.

The Z8000 family is a new set of microprocessor
components (CPU, CPU support chips, peripherals,
and memories) which supports the Z8000 architec-
ture. The account of how architectural goals were
selected and achieved for two key members of this
family-the Z8000 CPU and the memory manage-
ment unit-illustrates how much of a challenge
microprocessor architecture represents to the semi-
conductor industry. MOS technology shows enor-
mous potential, but it is still difficult to use because
of limitations on pin count, power dissipation, speed,
and complexity.'
Since this discussion is restricted to technical

issues, we will not alude to the many additional fac-
tors (marketing considerations, human considera-
tions, self-imposed restrictions, etc.) which make ar-
chitecture such a fascinating and difficult discipline.
Furthermore, no attempt has been made to ex-
haustively describe the Z8000 architecture and com-
ponents. Interested readers should consult the
specific manuals for a more complete description.2.3

The goals of the Z8000 architecture:
increased capabilities, architectural
compatibility, increased clarity

The primary reason for introducing a new system
architecture is to significantly improve the control
and processing capabilities of microprocessors while
maintaining their price/performance advantages.
Technical advances have permitted the implementa-
tion of substantialy increased processor power, but
the most significant motivation for a new component
family is generality. Only through such a family
could we provide for architecturally compatible
growth over a wide range of processing power re-
quirements.

Our approach was a staged system architecture
which attempts to provide new components, enhanc-
ed features, and new functions, while protecting the
user's investment in hardware and software. The
Z8000 family supports a single unified architecture
for al small, medium, and high-end user applications
which are implemented using a mix of components
within the same family.
The goals of the Z8000 architecture can be grouped

into three categories: increased capabilities, architec-
tural compatibility over a wide range of processing
powers, and increased clarity. In aU these cases the
resulting architectural features apply either to the
basic architecture (that seen by an applications pro-
grammer) or to system architecture (that seen by a
system designer or an operating system program-
mer).

Increased capabilities. All existing 8-bit micro-
processors and many 16-bit minicomputers suffer
from having a small address space. So, one of our
goals was to provide access to a large address space
(8M bytes). A second goal was to provide more re-
sources in terms of registers (16 general-purpose
16-bit registers), in terms of data types (from bits to
32 bits), and in terms of additional instructions com-
pared to existing microprocessors (multiply and
divide, multiple register saving instructions,
specialized instructions for compiler support etc.).
To facilitate complex applications it was important

to support multiprogramming with good hardware
support of task switching, interrupts, traps, and two
execution modes. Operating systems also required a
good hardware protection system.
FinaUy, we wanted to increase overal system per-

formance. This resulted in the choice of an implemen-
tation using a 16-bit-wide data path to memory.

0018-9162/79/0020-OO0000.75 © 1979 IEEE COMPUTER10

Architectural compatibility. One of the important
lessons learned from previous computer system
designs is that the design ofa new family architecture
is a rare occurrence. Oneway to apply this lesson is to
design a unified architecture compatible over a wide
range of processing powers. If we anticipate user
growth from small to large systems within a family
architecture, then such an approach can significantly
increase its life.
The two versions of the Z8000 (a 40-pin

unsegmented and a 48-pin segmented version) are
designed to achieve this goal, but many other
features contribute indirectly to the family com-
patibility. For small aplications an unsegmented
Z8000 with one or more 64K-byte address spaces can
be used. For medium applications, -a segmented
Z8000 and one memory management unit allows
direct access to 4M bytes of address space. For large
applications a segmented Z8000 and multiple pairs of
MMUs allow the use of several 8M-byte address
spaces.
Since the segmented Z8000 can run in an unseg-

mented mode, both systems are compatible. Finally,
to achieve even larger processing power through
hardware replication, the architecture provides basic
mechanisms for both multiprocessing and dis-
tributed processing.

Clarity. Clarity in an architecture is a measure of
how well key interfaces are defined and specified.
This is an elusive but important goal in a family
where new and unforeseen components will be added
during the life of its architecture.

We felt bus protocols were so important
that we developed an independent

specification for the Z-bus along with the
individual device manuals.

Clarity in terms of the basic architecture means
regularity and extendability of the instruction set, as
well as the general and simple handling of the
operating system interfaces. Clarity in terms of the
system architecture means a well-defined method of
communication between the various components.
The key link between these components is the Z-bus,
which is a shared system bus. In the section on com-
munication with other devices, we describe some of
the various types of bus protocols. At Zilog we felt
this was so important that we developed an indepen-
dent specification for the Z-bus along with the in-
dividual device manuals.4

Comparison with other system architectures

We are convinced that the differences between
microprocessor system architecture and large com-
puter system architecture are not sufficient to re-

February 1979

quire a different design approach, although they cer-
tainly influence the details of design compromises.
The last section of this paper deals with implementa-
tion tradeoffs and illustrates some particular com-
promises. (In a few places we mix implementation
considerations with descriptions of architectural
tradeoffs. Despite theimportance of separatingan ar-
chitecture from its implementation, we found that
this separation is often absent during the actual crea-
tion of a new architecture.).
Two differences between conventional computer

systems and microprocessor systems have the
greatest impact: price structure and component
boundary differences. For high-end LSI systems, it
makes sense to have one unified architecture, but
unlike their computer family counterparts (IBM
360/370, PDP-11) different implementations cannot
be justified on a price/performance basis. Speed and
performance are mainly dependent on the state of
technology, and therefore, for a given application, a
user will waste the speed willingly since another
slower implementation would cost the same. This
does not exclude different versions of one implemen-
tation, which reflect only different test and produc-
tion criteria such as package type, functional tem-
perature range, and even speed range.
Most computer systems have both external and in-

ternal interfaces. External interfaces which define
system boundaries are often standardized (e.g., the
IBM channel interface or theDEC unibus). The inter-
nal interfaces ofmost mini or large computer systems
are essentially hidden. In contrast, the component
boundaries of a microprocessor-based system repre-
sent actual interfaces, and most users must be famil-
iar with them as well as with external interfaces.
Because the component interfaces are more visible
and often must be more general, the microprocessor-
oriented system bus emerges as a key standardiza-
tion link to allow a wider mix of components and
designs.

The basic architecture

Address space considerations. It is advantageous
to have more than one address space, with each ad-
dress space as large as possible. In the Z8000,
memory references and I/O references are viewed as
references to different address spaces. The I/O space
is discussed in the section below on communication
with other devices. Memory references may be in-
structions or data and stack accesses, with each type
of access possible in either system or normal modes.
The Z8000 distinguishes between each of these
reference possibilities by using different combina-
tions of its status lines. Separating the various ad-
dress spaces can be used to increase the total number
of addressable bytes and to achieve protection. The
size of each address space depends on the versions of
the Z8000 used. The 40-pin package version allows
each address space to be at most 64K bytes, the
48-pin package version allows each address space to
be at most 8000K bytes.

11

The 40-pin version is intended for systems, often
used as dedicated systems, where the program and
data spaces are small. In this case, relocation is not
usually important. Using the different address
spaces, one has a simpleway to address in practice up
to 4 x 64K bytes (with a maximum of 6 x 64K bytes).
Some simple protection is achieved by separating
these spaces in hardware.
The 48-pin version with one or more MMUs is in-

tended for the medium to large applications where
relocation and better memory protection are impor-
tant.3 In these cases, status information can also be
used to separate between address spaces by using
multiple MMUs. But it is also essential to achieve the
detailed memory protection required. (It is possible
to use the 48-pin version without anMMU.) For these
high-end applications, the address spaces are so large
that one is unlikely to exhaust them. Experience with
large computers shows that 8M bytes is probably
adequate. The current implementation of the Z8000
uses 8M-byte address spaces, but the architecture
provides for 31-bit address (2147M bytes).

In both versions, the Z8000 allows direct access
to each address space. Direct access means that the
addresses used in instructions or. registers have as
ma'ny bits as the address space size requires. In other
schemes the effective address is a combination of a
shorter field in the instruction and other extension
bits often found in an implied register. Despite the
shorter address fields, we believe this "indirect ac-
cess" does not save bytes, because extra instructions
must be used to load and save the implied registers,
which are typically in short supply.

Registers. The Z8000 is primarily a memory-to-
register architecture. This characteristic does not en-
tirely exclude other organizations, and mechanisms
exist in the Z8000 to support them. For example,
memory-to-memory operations are supported for
strings, whereas stack operations are supported for
procedure and process changes. This choice provides
upward compatibility with the Z80. A register ar-
chitecture also results in good performance, since
register accesses are made at a greater speed than
memory accesses in the current implementation.
Experience with register-oriented machines seems

to confirm that four general-purpose registers are not
enough and that a "proper" number is between eight
and 32.5 The Z8000 supports bytes, words (16-bit),
and long words (32-bit), and a few instructions even
use quadruple-word (64-bit) data elements. If we
choose 16, 16-bit registers allow eight 32-bit registers
as well as four 64-bit registers (Figure 1). Since ad-
dresses are 32 bits, the necessity of at least eight
32-bit registers was obvious. The impact of the 4-bit
register field on the instruction format depends also
on the number of address modes and operands. Six-
teen registers allowed a reasonable tradeoff, whereas
32 registers would have resulted in too few one-word
instructions.
With one minor restriction any register can be used

by any instruction as an accumulator, source
operand, index, ormemory pointer. This regularity of

the structure is so important that it is worthwhile to
sacrifice any possible encoding improvements in in-
struction formats which could result from dedicating
registers to special functions. Encoding improve-
ments based on instruction frequency, so that fre-
quent instructions use one word, aremore effective in
saving space without having a negative effect on the
architecture.

Why not have specialized registers? The
- difficulty lies in the fact that the

restrictions caused by dedication are
inconsistent with one another.

Most applications dedicate the available registers
to specific functions. For example,. most high-level
languages require a stack pointer and a stack frame
pointer. Then why not, one might argue, have
specialized registers? The difficulty lies in the fact
that the restrictions caused by dedication are incon-
sistent with one another. If the architecture supplies
only general-purpose registers, the user is free to
dedicate them to specific usages for his application
without restrictions. This is important in the context
of microprocessors where user applications are not
well known and where high-level languages are still
used infrequently.
For example, the Z8000 allows software stacks to

be implemented with any register. There are also two
hardware supported stacks, but the registers used
are still general-purpose and can participate in any
operation. There is no allocated stack frame pointer,
since any register can be used by means of the proper
combination ofaddressing modes. The savings realiz-
ed by register specialization are unattractive when
the given function can still be performed simply. The
loss that would result from restricting the applica-
tions would be too great. In contrast, significant sav-
ings result from excluding RO from use as an index or
memory pointer. This exclusion allows one to distin-
guish between the indexed and direct addressing
modes which use the same combination of the in-
struction address mode field. The price is small, since
RO still can be an acumulator or source register and
15 others accumulator, index, and/or memory
pointers are available. In this case the restriction
made sense.

Another deeision tobemade about registers is their
size. Since the architecture handles multiple data
types we must have multiple data register sizes,
which can hold each data type. The solution of the
problem is implemented in the architecture by pair-
ing registers, two 1-byte registers make a word
register,- two word registers make a long word
register, etc.

Data types. Users would like to have as many
directly implemented data types as possible. A data
type is supported when it has a hardware representa-

12 COMPUTER

17 RHO 0i 7 RLO 0

15 RH1 RL1 0
ROO

RH2 RL2

RH3 'RL3
RH4 RL4 I1I
RH5 RL5

RH6 ! RL6 |

RH7 RL7

115 01

14' SYSTEM STACK POINTER
NORMAL STACK POINTER

1 SYSTEM STACK POINTER

NSYORMAL STACK POINTER

FLAG CONTROL WORD

PC SEGMENT NO.

PC OFFSET

SEGMENT NUMBER

UPPER OFFSET
15 14 9 8 0

. RATE L COUNTER
REFRESH ENABLE

R04

ROB

-RQ1 2

Figure 1. CPU registers (segmented version).

tion and instructions which directly apply to it. New
data types can always be simulated in terms of basic
data types, but hardware support provides fasterand
more convenient operations. At the same time, a pro-
liferation of fully supported data types complicates
the architecture and the implementations.
The Z8000 supports several primitive types in the

architecture and provides expansion mechanisms.
The basic data types are obviously the ones expected
to be used most frequently. The extended data types
are built using ex'isting data types and manipulated
using existing instructions.
The basic data type is the byte, which is also the

basic addressable element. All other data types are
referenced using their first byte address and their
length in bytes. The architecture also supports the
following data types: bytes (8 bits), words (16 bits),
long words (32 bits), bytes,and word strings. In addi-
tion, bits are -fully supported and addressed by
number within a byte or word. BCD digits are sup-
ported ano represented as two 4-bit digits in 1 byte.
One consEquence of this data type organization is
that byte, word, and long-word registers are needed

February 1979

to support them. The Z8000 even provides quadruple
register-another extension-used in long-word
manipulation.
Other data types are supported by using one of the

preceding data types; for example, addresses are

manipulated as long words, and each element (seg-
ment number or offset) can be manipulated as a byte
or a word. Instructions are one to five-word strings,
the program status is four words, etc.
As the family grows, support for new data types

will be added. The architecture will need to support
them in its registers or in memory if they do not fit in
registers (as strings are implemented today). But
most important, the architecture will have to support
the addition of new instructions to its repertoire.

Instructions. In designing an instruction format
the architect must decide how to allocate a limited
numberofbits to the opcode field, address mode field,
and other operand. subfields. Instruction usage
statistics are the best source of data to influence deci-
sions about instruction set format." 6 7 Behind their
usage lies a strong technical position: we do not

13

I RO
RRR

IRl

R2
RR2

R3

R4

RR4
R5

R6
RR6

R7

R8
RR8

R9

R10
RR10 |

Rll

R12
RR1 2

R13
Rl

R14
RR14 Rl

R15

GENERAL
PURPOSE
REGISTERS

PROGRAM
STATUS

} PROGRAM
STATUS AREA
POINTER

I REFRESH

!I
.j
d

MODE OPCODE
LD R,RIn O 1 0 0 0O WIRl REG REG
LDB R,R ! IW ,l

MODE OPCODE
ADD R,DA, 1 O OEG
ADDB R,DmA I 1 0 010 0 /B(Oj R0 OT G-1

DA
Il

OPCODE
JR CC,RA I1 1 1, 0 t'I

RA

Figure 2. Examples of instruction formats (nonsegmente

believe that any one of the various instr
structures-register oriented, memory
stack oriented, symmetrical, or asym
etc.-are always better when used exclusi'
the task of the architect is to decide what hi
portant goals are, and for each of them ada]
features of the various structures so th
average, and for his set of goals, an optimui
can be found. We do not believe that the opt
be very sharp; it will be more like a range 4
tions for which the resulting composite
works well. We decided to use a register str
compatibility, multiple word instructions
memory-to-memory instructions for strir
structure for process control and procedur
"short" instruction for byte density imp
etc.

Instruction format consideration. Thei
over 110 distinct instruction types; sever

tion formats are illustrated in Figure 2. T
field specifies the type of instruction (for
ADD and LD). The mode field indicates th
ing modes (for example, Register (R), Direc
(DA). The data element type (W/B) ani

designator fields complete the basic i]
fields. Long word instructions use a differE
value from their byte or word counterpart.
instructions are encoded in a single word, a]
quent instructions which use more

operands use two words. There are often
fields for special elements such as immedi
or condition code descriptors (CC). Instrui
designate one, two, or three operands expl
instruction TRANSLATE AND TEST is the onl
four operands and is also the only one with;
register operand.

Several restraints can guide the proper cl
instruction format. A large number of opc(
or reserved) is very important: having a

struction implemented in hardware saves

improves speed. But one usually needs t
trate more on the completeness of the c
available on a particular data type rather t.
ding more and more esoteric instructions w
ed frequently, will not significantly affe
mance. Great care must be given to the prot
panding the instruction set so, for example
types can be added.

ONE Addressing modes. The Z8000 has eight address-
WORD ing modes: register (R), indirect register (IR), direct

address (DA), indexed (X), immediate (IM), base ad-
dress (BA), base indexed (BX), and relative address
(RA). Several other addressing modes are implied by

TWO specific instructions such as autoincrement or auto-
WORDS decrement.

Although a very large number of addressing modes
is beneficial, usage statistics demonstrate that not all
combinations of operands, address modes, and

I]WORD operators are meaningful.6 The five basic addressing
modes of R, IR, DA, X, and IM are the most frequent-

d version). ly used and apply to most instructions with more
than one address mode. For two-operand instruc-

utction set tions, statistics show that most of the time the
orientedt destination is a register. Other cases of addressing
imetrical, mode combinations and less basic addressing modes

are associated with special instructions. Thus, the
is most im- frequent combination of autodecrement for the
ptthebest destination operand with the five basic addresspt onthebesmodes for the source operand is provided by the PUSH
masolution instruction. The combination of autoincrement ad-
timumtwill dressing modes for both source and destination
of applica operands is one of the block move instructions. In
structure essence, the address mode field space has been traded
ructure for for opcode field space. This allows more instructions
for speed, and combinations while staying within a one-wordforspee format.
ags, sta The price for this tradeoff is the infrequent occur-
e support, rence of pairs or triples of instructions simulating a

r missing addressing mode. This situation occurs in
most instruction sets in any case.

Z8000 has
al instruc- Code density. Because current microprocessors are
'he opcode restricted to primitive pipeline structures, their
example, speed is largely dependent on the number of executed

ie address- instruction words. Therefore, code density is not only
At Address important because of program size reduction but also
d register because of speed improvement. One would like to en-
nstruction code in the smallest number of bits the most frequent
antopcode instructions. The basic instruction size increment
Frequent was chosen to be a word for reasons dealing with
nd less fre- alignment, speed penalties, and hardware complexi-
than two ty. Thus the most frequent one and two-operand in-
additional structions take one word in their register or register-
late values to-register forms. Less frequent instructions or in-
ctions can structions which use more than two operands use at
icitly. The least two words.
y one with The Z8000 goes even further by selecting several
an implied special instructions as "short" instructions which

take only one word, when normally they would take
hoice of an two words. These instructions, such as LOAD BYTE
odes (used REGISTER IMMEDIATE and LOAD WORD REGISTER IM-
given in- MEDIATE (for small immediate values), CALL RELA-
bytes and TIVE, and JUMP RELATIVE, are so frequent statistical-
to concen- ly that they deserve such special treatment.
)perations A one-word JUMP RELATIVE and DECREMENT AND
han on ad- JUMPONNON-ZERoalsohave a very significant impact
,hich, if us- on speed. The short offset mechanism used by ad-
)ct perfor- dresses (and described below) is also designed to
blem of ex- allow one-word addresses. Compared to previous
new data microprocessors, the largest reduction in size and in-

crease in speed results from the Z8000'"s consistent

COMPUTER14

and regular structure of the architecture and from its
more powerful instruction set-which allows fewer
instructions to accomplish a given task.

High-level language support. For microprocessor
users, the transition from assembly language to high-
level languages will allow greater freedom from ar-
chitectural dependency and will improve ease of pro-
gamming.8 It is easy and tempting to adapt a com-
puter architecture to execute a particular high-level
language efficiently.9 Most programming languages
act as a filter and can be supported by a subset of
available hardware with greater efficiency.10 But effi-
ciency for one particular high-level language is likely
to lead to inefficiency for unrelated languages. The
Z8000 will be used in a wide variety of applications,
and we know that a large number of users will still be
using assembly languages. Since the Z8000 is a
general-purpose microprocessor, language support
has been provided only through the inclusion of
features designed to minimize typical compilation
and code-generation problems. Among these is the
regularity of the Z8000 addressing modes and data
types. The addressing structure providedby segmen-
tation should support procedures that result from
structured programming. Access to parameters and
local variables on the procedure stack is supported by
index with short offset address mode as well as base
address and base indexed address modes. In addi-
tion, address arithmetic is aided by the INCREMENT
BY 1 TO 16 and DECREMENT BY 1 TO 16 instructions.

Testing of data, logical evaluation, initialization,
and comparison of data are made possible by the in-
structions TEST, TEST CONDITION CODES, LOAD IM-
-4AEDIATE INTO MEMORY, and COMPARE IMMEDIATE
WITH MEMORY. Compilers and assemblers
manipulate character strings frequently, and the in-
structions TRANSLATE, TRANSLATE AND TEST, BLOCK
COMPARE, and COMPARE STRING all result in dramatic
speed improvements over software simulations of
these important tasks, especially for certain types of
languages. In addition, any register can be used as a
stack pointer by the PUSH and POP instructions.

Segmentation. In order to provide for convenient
code generation and data access, addresses must also
be eagsy to manipulate. Architectures with direct ac-
cess to memory typically use a linear address space,
so that address arithmetic may be used on the entire
address. In this case, addresses are manipulated as
one of the data types of the same size. This removes
the need to distinguish an address as anew data type.
In contrast, the Z8000 has a non-linear address space.
Addresses are made of two parts: a 7-bit segment
number and a 16-bit offset. Only the offset par-
ticipates in address arithmetic. The segment number
is essentially- a pointer to a part of the total address
space, which can varyin size from0 to64K bytes. The
hardware representation of a segmented address is a
long word or a register pair (Figure 3), which allows
the easy manipulation of each part of the address.
The segmented addresses are one of the key

mechanisms used to support both large and small

February 1979

15 0

777III7I
6 07 0

SEGMENT NO.I ?I
15 0

(b) |,,, 0, OFFSET 1 l

6 07 0
1 SEGMENT NO. :
15 0

(c) OFFSET
(c) ,

} REGISTER PAIR
OR LONG WORD

6 07 0
(d) 1 SEGMENT NO. | SWHORT OFFSET |

Figure 3. Hardware representation of segmented addresses. Any non-
segmented address is one word, whether it is in a register, memory,
or an instruction (Figure 3a). Segmented addresses are always two
words in a register or memory (Figure 3b); however, instructions can
have one of two forms. The usual case (long offset) requires two
words (Figure 3c); however, there is also a short offset form that uses
only one word (Figure 3d).

memory systems efficiently. The two versions of the
Z8000 implementation, the 40-pin unsegmented and
the 48-pin segmented, allow the maintenance of the
architectural compatibility and ease the growth be-
tween these two application groups. The segmented
address space guarantees that each 64K-byte ad-
dress space of the 40-pin version becomes one of the
segments of the 48-pin version. Each 40-pin version's
16-bit address becomes an offset within the segment,
and a mode exists in the 48-pin package version in
which 40-pin version code can be executed. Further-
more, compatibility with any current 8-bit micro-
processor such as the Z80 is easy, and a new micro-
computer such as the Z8 can address external data in
a shared segment with the Z8000.
The hardware performance of the Z8000 is also im-

proved by address segmentation. Since a segment
number does not participate in arithmetic, it can be
put on the-bus before the result of-an address com-
putation is available. This feature allows the use of
MMUs with essentially no impact on memory access
time by allowing it to function in parallel with the
CPU. Indexing operations are also faster because on-
ly a 16-bit addition must be performed. Because of
-the distinction between the segment number and its
offset, one can use shorter addresses without soft-
ware constraints. Short addresses can use a short off-
set (fewer than 256 bytes) and thereby reduce pro-
gram size (Figure 3).

Finally, it is very easy to associate with each of the
128 segments ofthe address space-the protection and
dynamic relocation features desirable for larger sys-
tems. Relocation allows auser towrite his application
using logical addresses independent of any physical
addresses. Relocation is essential, for example, in a
disk-based general data processing system with
several users. Relocation is not essential for
dedicated applications with code typically residing in

15

6 0

Figure 4. Logical to physical address translation.

ROM. Users whose total memory needs are small are

also unlikely to need relocation.
In summary, the choice of a segmented address

space has provided-at low cost and with few prac-

tical limitations-a powerful solution to the problem
of user growth, relocation, and protection as well as

virtual memory implementation. We believe that a

linear address space could have achieved these
results but at a considerably higher price.

The system architecture

Protection facilities. The Z8000 protection
facilities can be divided into system protection
features and memory protection features. Ex-
perience with large computers has demonstrated the
advantages of having at least two execution modes
with different access rights to hardware facilities.
The Z8000 provides the system andnormalmodes for
this purpose. A simple protection system results
from the presence of these two modes and their

i6

associated stacks. A special class of "privileged" in-
structions is defined, which deals with I/O, inter-
rupts, traps, and mode changes. Programs in normal
mode which attempt to execute a privileged instruc-
tion will cause a trap and a change to system mode.
The switch from user to system mode can also be
caused by the system call instruction. These
mechanisms enforce protection and help in designing
reliable and efficient operating systems with clean
user interfaces. Several other traps are required to
achieve a consistent system: segmentation trap,
privileged instruction trap, and undefined instruc-
tion trap.
A desirable memory protection scheme is one for

which protection information (read only, read write,
execute only, system only, size of data or code, etc.) is
easily associated with the data and code structures of
a given application. It is also one for which a large
number of different types of protection information
can be verified.
The relocation and memory protection

mechanisms described above are provided by an ex-
ternal device: thememory management unit.3 To pro-
vide relocation and protection features directly on
the Z8000 would havedemanded toomuch simplifica-
tion. The externalMMUhas the further advantage of
providing for easier growth by the addition of com-
ponents. The Z8000 40-pin package does not have to
carry the burden of the unused advanced relocation
and protection features, although some form of pro-
tectioncan be achieved byhardware separation ofthe
different address spaces. With multiple MMUs, the
48-pin package user can control the relocation and
protection complexity desired in his application.

The memory management unit. The MMU per-
forms three functions: (1) address translation of
logical address to physical address using dynamic
relocation, (2) memory protection, and (3) segment
management. The addresses manipulated by the pro-
grammer, used by the instructions, and outputby the
Z8000 are called logical addresses. The MMU uses
these logical addresses, composed of a 7-bit segment
number and 16-bit offset, and transforms them into a
24-bit physical address (Figure 4). A 24-bit origin or
base is logically associated with each segment. To
form a 24-bit physical address, the 16-bit offset is ad-
ded to the base for the given segment. In effect, with
the help of one memory management device, the
Z8000 can address 8M bytes directly within a
16M-byte physical memory space. The reasons for
the choice of a large physical address space include an
expectation that large systems will want to use extra
bits for complex resource management purposes.
Each segment is givenanumber ofattributes when

it is initially entered into theMMU. When a memory
reference is made, the protection mechanism checks
these attributes against the status information from
the CPU. If a mismatch occurs, a trap is generated
which interrupts the CPU. The CPU can then check
the MMU status registers to determine the cause of
the trap. Segment attributes include segment size
and type (read only, system only, execute only, in-

COMPUTER

valid DMA, invalid CPU, etc.) Other segment protec-
tion features include a write warning zone useful for
stack operations.
When a memory protection violation is detected, a

write inhibit line guarantees that memory will not be
incorrectly changed. The invalidDMA and CPU bits
indicate that the entry cannot be used by theDMA or
CPU respectively, because either the segment
number is illegal or the segment entry is not loaded.
This fast feature, in conjunction with the segment
history information (segment "changed" and seg-
ment "referenced" bits) and the segmentation trap
mechanism, allows the implementation of a virtual
segmented memory system.
The MMU comes in a 48-pin package (Figure 5).

The chip inputs are the segment number, the upper 8
bits of the offset, and status information from the
CPU. The outputs from the segment chip are the up-
per 16 bits of the 24-bit physical address and the
segmentation trap line. Since the memory manage-
ment device processes only the upper 8 bits of the off-
set, the lower 8 bits go directly to memory. This is
equivalent to having zeros in the 8 lower bits of the
24-bit origin. Thus, the memory management device
only needs to store the upper 16 bits of each base ad-
dress. Segment limit protection is done in the
memory management device, and thus segments can
be protected in increments of 256 bytes.
EachMMU stores 64 segment entries that consist

of the segment base address, its attributes, size, and
status. A pair of MMUs support the 128 segments
available in an address space. Additional MMUs can
be used to accommodate multiple translation tables.
Using the status information provided with each ref-
erence, pairs of MMUs can be enabled dynamically.
The memory management device functions cont

stantly while memory references are made, but its
translation and protection tables are loaded and un-
loaded as an I/O peripheral. To achieve this, the
memory management device has chip select, address
strobe, data strobe, and read/write lines. The Z8000
special byte I/O instructions that use the upper byte
of the data bus can load or unload the memory
management device.

Mode switching: interrupt and trap handling.
From small users in dedicated process control ap-
plications to large users in general-purpose data pro-
cessing applications, asynchronous events such as in-
terrupts and synchronous events like traps must be
handled. When these events occur, the state of any
currently executing program must be saved during
what is generally called a task switch or process
switch. The users benefit from the availability of
many interrupts and traps. They also benefit from a
fast, easy, and uniform handling of process switch-
ing.

Peripherals using interrupts have widely varying
constraints on interrupt processing time. To solve
this problem, peripherals with the same charac-
teristics are often associated with one of several inter-
rupts. A priority enforced among the several inter-
rupts allows the required processing time to be

Figure 5. Memory management device with Z8000 CPU.

guaranteed. Enabling or disabling the various inter-
rupts is the mechanism used to enforce this process-
ing priority.
In the Z8000, we felt that three levels of interupts

were sufficient. A non-maskable interrupt represents
a catastrophic event which requires special handling
to preserve system integrity. In addition there are
two maskable interrupts: non-vectored interrupts
and vectored interrupts, which correspond to a fixed
mapping of interrupt processing routines and to a
variable mapping of interrupt processing routines
depending on the vector presented by the peripheral
to the Z8000.
Both interrupts and traps result in similar process

switches. Information related to the old process (its
program status) is saved on a special system stack
with a code describing the reason for the switch.. This
allows recursive task switches to occur while leaving
the normal stack undisturbed by system informa-
tion. The state of the new process (its new program
status) is loaded from a special area in memory-the
program status area-designated by a pointer resi-
dent in the CPU (see Figure 6).
The use ofthe stack and ofa pointer to the program

status area are specific choices made to allow ar-
chitectural compatibility if new interrupts or traps
are added to the architecture. The choice of the two
modes of execution has a strong impact on the design
ofclean user interfaces. Experience has shown that in
large systems the normal mode instruction set and
the user interfaces together constitute the most im-
portant element in achieving architectural com-
patibility.

Communication with other devices: the Z-bus. The
Z-bus is the shared bus which links all the com-
ponents of the Z8000 family.4 The variety and perfor-
mance requirements of the components are so dif-
ferent that in fact the Z-bus iscomposed of five buses:

February 1979 17

PROGRAM STATUS AREA POINTER

PSAP SEG NO I UPPER O 0 ..0

OFIFSET/
IMPLIED 0

OFFSET-
NON-SEGMENTED 4

Z8000

8

12

16

20

24

28
30

32

34

36

*OFFSETS IN BYTES
UNUSED FOR NON-SEGMENTED Z8000

Figure 6. Program status area.

OFFSET'
PROGRAM SEGMENTED

STATUS AREA Z8000

NOT USED

UNIMPLEMENTED
INSTRUCTION

PRIVILEGED
INSTRUCTION

SYSTEM CALL
INSTRUCTION

SEGMENT
TRAP**

NON-MASKABLE
INTERRUPT

NON-VECTORED
INTERRUPT

VECTORED
INTERRUPT
NEW PC

NEW PC

NEW PC

I0

8

16

24

32

40

48

56
60

64
68

72
VECTORED
INTERRUPT
JUMP TABLE

a memory bus, an I/O bus, an interrupt bus, and two
resource request'buses (Figure 7).
The Z-bus is called a "shared" bus because several

components can use it. A bus user is a CPU or a pe-
ripheral which can usually generate one or more bus
transactions such as memory data request or an I/O
request. Identical bus transactions cannot take place
at the same time, but serialization mechanisms allow
sequential use of the Z-bus. Architecturally, the
buses can be grouped into two structures. The I/O
structure uses the I/O bus and the interrupt bus. The
memory structure uses the memory bus with or with-
out address extensions. Both structures can use the
resource request bus and the mastership request bus.
Each bus consists of a set of signals and the pro-

tocols which preside over the various types of tran-
sactions. Part of each protocol is the timing relation-
ship between relevant signals. The Z8000 CPU pro-
vides most of these timing relations. The advantage
of such a choice is the significant reduction in the
number of components required to build such a
system. One consequence is that bus transactions
cannot be aborted or delayed freely since some
devices, especially memory, have specific timing con-
straints. The most important consideration for the
Z-bus is the need to interface to multiplexed address
and data lines of the Z8000 CPU whichmust fit in 40-
and -48-pin packages. The Z-bus maintains these
multiplexed address and data lines. Very little speed
could be gained by demultiplexing these lines for
memory references since memories are themselves
multiplexed. The most important advantage of a
multiplexed Z-bus is the direct addressability of

Figure 7. Z-bus signals.

peripheral internal registers. This feature allows the
construction of complex peripherals which maintain
a simple program interface.
The Z-bus is known as a transparent or asyn-

chronous bus. Z8000 components do not require that
their clocks be synchronized with theCPU clock. The
signals used by each transaction provide all the
necessary timing. This concept is important: it
allows, for example, I/O references to be independent
of the speed and clock frequencies required by other
Z-bus transactions.
I/O bus versus memory bus. The I/O and memory

buses are the most important. The Z8000 family ar-
chitecture distinguishes between memory and I/O
spaces and thus requires specific I/O instructions.
This architectural separation allows better protec-
tion and has a nicer potential for extension. The I/O
and memory buses use a 16-bit address/data bus,
which allows 16-bit I/O addresses and 8- or 16-bit
data elements. Memory addresses are 16 bits for the
40-pin package or extended to 23 bits using the seg-
mented version. Thus, the memory bus is in fact a
logical address bus. The increased speed require-
ments of future microprocessors is likely to be achiev-
ed by tailoring memory and I/O references to their

COMPUTER18

respective characteristic reference patterns and by
usi ng simultaneous I/O and memory referencing.
These future possibilities require an architectural
separation today. Memory-mapped I/O is still possi-
ble, but we feel the loss ofprotection and potential ex-
pandability are too severe tojustify memory-mapped
I/O by itself.
Both the I/O andmemory buses need address, data,

and control signals. One important implementation
decision was to overlap the signals used by the
memory and I/O buses on the same Z8000 CPU pins,
with the obvious exception of the status signals used
to distinguish between the two types ofbus requests.
For the current Z8000 implementation the resulting
reduction in number ofpins is significant. In contrast
the impossibility of doing concurrent memory and
I/O referencing is not very significant since their
speeds are essentially the same.
In addition, memories and peripherals both benefit

from the availability of early status information
defining the bus transaction type (I/O versus
memory, read versus write) ahead of the actual tran-
saction so that bidirectional drivers and other hard-
ware elements can be enabled before the reference.
The status lines of the Z8000 CPU provide this type
of early status.
The I/O structure. Since many peripherals are con-

nected with one CPU, the I/O bus is shared and
serialization must be provided. One solution involves
using a master/slave protocol. The CPU is a master
which can initiate an I/O transation at any time. The
peripherals are slaves which participate in a transac-
tion only when requested by the master. In order to
find out ifa peripheral needs tobe serviced the master
can poll each in turn. The Z-bus also provides a faster
way of getting the attention of a master: an interrupt
bus. In contrast, with the I/O transaction data bus,
each peripheral sharing the interrupt bus may "try"
touse it simultaneously. The interrupt bus uses an in-
terrupt line, interrupt acknowledge line, and two
more lines used to form a daisy chain. The daisy chain
is an implementation of a distributed arbitration
policy between the requests. Priority of processing is
determined by the position in the daisy chain, and
peripherals can be preempted. Interrupt vectors are
used to determine the identity of the peripherals re-
questing service via an interrupt.
Other buses. The. two resource request buses are

used to request the control of the Z-bus from theCPU
and to request control of any generalized resource.
The Z8000 CPU or any Z-bus compatible CPU does

not need to request the bus to access it as a master,
and is, therefore, the default master. Other devices
can request bus mastership, but they must go
through a non-preemptive distributed arbitration us-
ing another daisy chain. The CPU always relin-
quishes the bus at the end of its current bus transac-
tion.
The resource request chain is a generalization of

that concept in which each resource requestor has
equal importance and can use the resource in a non-
preemptive manner. This mechanism in the Z8000
CPU permits one to implement in software the kind

of exclusion and serialization mechanisms needed for
multiple distributed systems with critical resource
sharing.

Multiprocessing. In the context of today's large
mainframe systems characterized by multiple pro-
cesses sharing one processor, one is tempted to
design distributed pr6cessing systems with many
low-cost microprocessors running dedicated pro-
cesses. Such an approach distributes intelligence
towards the peripherals, results in modularization,
and permits easier development and growth. Unfor-
tunately, in the past, the problem with such an ap-
proach has been software andnot hardware. Thus one
cannot be expected to provide detailed solutions in
hardware to a software problem that has not been
solved yet. However, some basic mechanisms have
been provided to allow the sharing of address spaces:
large segmented address spaces and the external
MMU make this possible, and a resource request bus
is provided which in conjunction with software pro-
vides the exclusion and serialization control of shared
critical resources. These mechanisms and new
peripherals like the Z-FIO; have been designed to
allow easy asynchronous communication between
different CPUs.

Implementation tradeoffs

The key family decision: producibility. Confronted
with the problem of designing a new LSI-based
system architecture, we could have ignored package
size considerations by accepting packages with 64 or
more pins, or we could have ignored mass production
technology constraints by using die sizes larger than
260 mils square. Such solutions are often justified in
the implementation of an existing computer system.
The component boundaries, package limitations, and
technological limitations are secondary to achieving
the goal ofexact membership in the computer family.
But if onfe were to design a new system architecture
with the same lack of constraints, the individual com-
ponent would not be price-competitive-only the
total system would be. A new system architecture
based on this approach could only be used to design
yet another traditional computer.

The Z8000 family provides basic, general-
purpose blocks out of which a system

solution to most problems can be
implemented.

The Z8000 family market is intended to be much
broader, and each component of the family must be
economically viable. The staged introduction of com-
ponents which are economically viable by themselves
allows us to serve the market from very small con-
figurations to very large configurations by using
more components, in any combination. Not only do
we believe that this approach does not restrict

February 1979 19

4-
BUSJf

TIMING (4-

i
4-

4-

4--

STATUS
4-

4-

_4-

BUS -

CONTROL 4-

INTERRUPTS {

MULTI-MICRO' --

CONTROLX. 4-

-*

4-* BUS

4-*
4-B

4- DESD
4- U
4-*
_-

-_0' SEGMENTED
~~VERSION

_
*

SEGMENT_* NUMBER

TA

SEGMENT
TRAP j..__1__

T T T ; RESET
+5V GND SUB-

STRATE
DECOUPLE

Figure 8. Z8000 pin functions.

system architectural possibilities, butwe also believe
that the family wil be more effective because it wil
grow with its customer.
The Z8000 family does not always attempt to pro-

vide specific architectural solutions, often im-
plemented in hardware, to all system architecture
problems. Instead, it provides basic, general-purpose
blocks out of which a system solution to most pro-
blems can be implemented. The multi-microproces-
sor and distributed system capabilities of the Z8000
family illustrate the use of open-ended mechanisms
to solve a variety of architectural problems, while the
memory management of address space iUustrates a
specific problem supported by a specific solu-
tion-the MMU. However, other solutions more ap-
propriate to a particular problem can be used and an
advance in the state ofthe artmight be mapped intoa
new device for the family.
This vision of the family often results in com-

ponents more powerful and complex than an applica-
tion may require. The user should not take this as a

cause for alarm, but rather as the reason his applica-
tions growth will be easier.

Basic CPU implementation decisions. The Z8000
currently uses a 16-bit data bus (Figure 8), an internal
register array of 16-bit registers, and a 16-bit paraUlel

20

ALU. These implementation decisions, which were
guided by the technological and practical considera-
tions, have a strong impact on performance.
To achieve good performance with the instruction

format and data type envisioned for the Z8000, only a
16-bit bus seens adequate; a 32-bit bus would have
necessitated using an unacceptable 56-pin or larger
package. Optimal performace is obtained with this
chosen bus width if the size of the frequently used
register-to-register operations becomes one word.
The choice of ALU and internal register widths is a
tradeoff between speed of the most frequent opera-
tions and the chip area needed to implement a wider
ALU or data path inside the CPU.
None of these implementation decisions should

limit the architecture. Instructions are from one to
five words long, and data types and addresses are not
limited to 16 bits. For example, 32-bit words are one
ofthemain data types ofthe machines, andaddresses
occupy two words. The address mechanism il-
lustrates the strong distinction between an architec-
ture and its implementation. The architectural ad-
dress representation uses a 32-bit word of which 8
bits are reserved and 1 is a short format/long format
descriptor. Thus, the Z8000 architecture provides up
to 31-bit addresses, but only 23 are currently im-
plemented and 23 pins of the current package are
allocated to addresses.

MMU tradeoffs. The MMU and its relation to the
Z8000 CPU illustrate tradeoffs that amicroprocessor
architect and designer team must make to ensure
component rnanufacturability.
To achieve the goals of good architectural com-

patibility for high-end systems, it was necessry to in-
clude the protection and relocation mechanicms
described above. But if all desired features were im-
plemented as a one-chip CPU/MMU combination, it
would have been too large and, therefore,
uneconomical. And if a reduced set of features were
implemented, it would have been architecturally too
primitive. Thus, the choice was made to maintain all
features and use two chips. This new organization
has several significant advantages, such as a
capability for multiple MMUs, and allows the access
of aDMA device to the MMU.
Given the choice of an external MMU, the next set

of decisions concerns package size and circuit speed.
Having each relocated segment start on a word boun-
dary would have required a64-pinpackage anda very
fast 24-bit adder (in fact, a 16-bit adder and 8 bits of
carry propagation). In contrast, the decision to start
segments on 256-byte boundaries allows the use of a
48-pin package, a fast 8-bit adder, and 8 bits of carry
propagation. The latter solution is technically
superior and places practically no restriction on the
architecture. Segment granularity can be viewed as
an implementation restriction and not as an architec-
tural restriction.
Making the 8 low-order bits of the offset go directly

to memory also significantly reduces memory access
time. Since dynamic memories use these bits first,
most of the MMU relocation time is hidden during a

COMPUTER

normal memory access-. The availability of segment
numbers earlier than the associated offset bits rein-
forces this advantage and allows theMMU to result
in essentially no memory access speed reduction.
Each MMU entry also requires 8 bits less for base
and segment size value. This is important: it is
desirable to pack as many entries as possible per
MMU. With 64 entries a 2K-bit memory is needed,
which is technologically difficult in view of the
amount of logic surrounding this memory and the
complexity of its organization.
The fact than anMMU is only connected to the up-

per byte of the data bus requires the use of special I/O
instructions for its loading and obliges us to replace
the possible use of an automatic demand loading of
entries by explicit instruction loading. To compen-
sate for the time penalty associated with the loading
of potentially unused entries, multiple MMUs are
used. They not only allow the implementation of 128
entries, but pairs of MMUs can be automatically
enabled by the system and normal mode pins effec-
ting a full environment switch at electronic speed.
We feel this example illustrates one important

design approach: to compromise as little as possible
on advanced architectural features but to accept
compromises which result in implementation ease in
order to achieve economical components.

Conclusion

The architectural sophistication of the new 16-bit
microprocessors is rapidly approaching the level of
the minicomputer and large computer. Problems
such as component families, large address spaces,
bus standards, I/O structures, software investments,
and architectural compatibility are being directly ad-
dressed. Some of the solutions to these problems are
known, and therefore the transition from 8-bit micro-
processors was relatively easy. But the challenges
ahead-networks, distributed processing, new ap-
plications-are much harder. The impact of micro-
processors is already enormous, but we feel they will
achieve the often-predicted computer revolution only
after these new problems are solved. *

Acknowledgements

The Z8000 family would not exist without the very
talented and dedicated designers who contributed to
and implemented the ideas described in this paper:
Masatoshi Shima for the Z8000, Hiroshi Yonezawa
for the MMU, and Ross Freeman for the peripheral
devices. Judy Estrin made invaluable contributions
to the architecture of the Z8000 and Z8. Many discus-
sions with Charlie Bass, Leonard Shustek, and
Forest Baskett have greatly influenced the Z8000.
Leonard's instruction set measurements were
especially valuable. Dennis Allison, Steve Meyer,
Bruce Hunt, and many others must be thanked for
their comments on early drafts of this paper.

February 1979

References
1. B. L. Peuto and L. J. Shustek, "Current Issues in the

Architecture of Microprocessors," Computer, Vol. 10,
No. 2, Feb. 1977, pp. 20-25.

2. Zilog, Z8000 Technical Manual, Zilog, Inc., 1979.
3. Zilog,MMU Technical Manual, Zilog, Inc., 1979.
4. Zilog, Z-Bus Specification, Zilog, Inc., 1979.
5. A. Lunde, "Empirical Evaluation of Some Features of

Instruction Set Processor Architectures," CACM,
Vol. 20, No. 3, Mar. 1977, pp. 143-152.

6. L. J. Shustek, Analysis andPerformance ofComputer
Instruction Sets, PhD Dissertation, Dept. of Com-
puter Science, Stanford University, Stanford, Calif.,
Jan. 1978.

7. B. L. Peuto and L. J. Shustek, "An Instruction Set
Timing Model ofCPU Performance,"Proc. FourthAn-
nual Symposium on Computer Architecture, Mar.
23-25, 1977, pp. 165-178.

8. C. Bass, "PLZ: A Family of System Programming
Languages for Microprocessors," Computer, Vol. 11,
No. 3, Mar. 1978, pp. 34-39.

9. A. S. Tannenbaum, "Implications of Structured Pro-
gramming for Machine Architecture," CACM, Vol. 21,
No. 3, Mar. 1978, pp. 237-246.

10. N. G. Alexander and D. B. Wortman, "Static and
Dynamic Characteristics of XPL Programs," Com-
puter, Vol. 8, No. 11, Nov. 1975, pp. 41-46.

Bernard L. Peuto is one of the guest editors for this special
section; his biography appears with the introduction
on p. 9.

Reader Service Number 3

