
C

Umted States Patent [19] [11] Patent Number: 4,486,827
Shima et a]. [45] Date of Patent: Dec. 4, 1984

[S4] MICROPROCESSOR APPARATUS [56] References Cited
[75] Inventors: Masatoshi Shima, Santa Clara; U.S. PATENT DOCUMENTS

PM“ Fawn’ CuPmim; Ralph K- 3969 724 7 1976 A d a]. 364 200
Ungennann, Los Altos, all of Calif. ’ ' / n "son a /

[73] Assignee: Zn“. In” Campbell, Calif. Primary Examiner—Felix D. Gruber
Assistant Examiner—1ohn G. Mills

[21] APP]- No‘: 340,470 Attorney, Agent, or Firm—Majestic, Gallagher, Parsons
[22] Filed: Jnn. 1a, 1982 & Swbe?

Related us. Application Data [57] ABSTRACT

[62] Division of Ser. No. 092,327, Nov. 9, I979, Pat. NO. A special "set 519mb“ is Pmvided i" the CPU' “sing
4,332,008, which is a division ofSer. N0. 665,228, Mar. the Same control "1P1lt to the CPU as the normal reset,
9, 1976, abandoned. ‘ to reset only the program counter to facilitate the use of

[51] Int Cl 3 Gm 9/00 a single CPU in a microprocessor development system.

[52] US. Cl. 364/200
[58] Field of Search 364/200, 900 7 Claims, 14 Drawing Figures

SPEClAL ‘ __
RESET 0 74 u D ° 5 "Egg

Ml CLK

OUTSIDE CHIP
RESET

J 0 RES‘ mes —

c4> F
_ _)3 CLRC /;
ill-‘1K sPecm.

_ RE RESET
x a

mass n

DATA IS PRESET ouamc CLOCK is LOW.
mm WILL BE rmusrznneo TO OUTPUT "
on msms sues 0F CLOCK

m RES‘)1} NORMAL
T2 nsssr F/F

E———C{ >— NRES
RESI

US. Patent Dec. 4, 1984

l3
CPU AND
SYSTEM
CONTROL
SGNALS

INSTRUCHON
DECODE

8
CPU

CONTROL

INST
REG.

CPU
CONTROL

W

Sheet 1 of 13 4,486,827

SBW
DATA BUS

DATA BUS
CONTROL

ALU INTERNAL DATA BUS

CPU
REWSTERS

ADDRESS
CONTROL

U IGJMT ADDRESS BUS

CPU BLOCK DIAGRAM

FlG.l

US. Patent Dec. 4, 1984 Sheet 2 0f 13 4,486,827

MAIN REG SET ALTERNATE REG SET
A A

f F \

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F Al Fl

8 c B’ c’

GENERAL
D E D’ 5’ PURPOSE

REGISTERS

H L H’ L’

\

INTERRUPT MEMORY
VECTOR REFRESH

I I R

INDEX REGISTER IX

sPEcIAL
> PURPOSE

INDEX REGISTER IY REG‘STERS

STACK POINTER SP

PROGRAM COUNTER PC

J

CPU REGISTER CONFIGURATION

FIG. 2

US. Patent Dec, 4, 1984

OSC

+5V 280
CPU

RESET

Sheet 3 of 13 4,486,827

+5 VOLT
POWER SUPPLY

T T
A0- A9 +5v GND

ADDRESS
m

MREQ —

.5 0 CE! 8K BIT
5?? ROM

DATA
DATA BUS OUT

lORQ ‘ I V i
(T ?? A L—<>|D' 'RQ 8/“ -<—— 0

W __ Z80—P\O

i’) M! C/D ‘_ Al
PORT A PORT B

OUTPUT INPUT
DATA DATA

MINIMUM COMPUTER SYSTEM

FIG. 3

US. Patent Dec. 4, 1984 Sheet4of 13 4,486,827

US. Patent Dec. 4, 1984 Sheet8of 13 4,486,827

FFFF
F800 MDS MONITOR

l _ — _ _ _ ~ _ _ _ _ _ _ _ _|

' I

: MAY BE AVAILABLE :
I TO USER IF I
: MEMORY :
I NONCONTIGUOUS |

4000, 0000 , |
0000, OR F000 » §

MDS MONITOR
AND 3|8 LOCATIONS

ICEBOSD TEMP. DATA

| SYMBOL TABLE :
I ___________ __

i : UPPERLIMIT
| AVAlLABLE |
I To l
: USER :
a |
| |

ZFFF

ICE8OSD

0020 ‘"055000555‘"
0000

(PRIOR ART)

FIG. 8

US. Patent Dec. 4, 1984

CPU

MEMORY

Ek/ MONITOR
PROGRAM

CPU

USER

SPACE

FIG. |2A

USER

SPACE

MONITOR
PROGRAM

FIG. I2B

Sheet 12 0f 13 4,486,827

MONITOR MODE

USER MODE

4,486,827
1

MICROPROCESSOR APPARATUS

This is a division of application Ser. No. 092,827, ?led
Nov. 9, 1979, U5. now Pat. No. 4,332,008, which in
turn is a division of application Ser. No. 665,228, ?led
Mar. 9, 1976, now abandoned.

BACKGROUND OF THE INVENTION

The present invention ganerally relates to digital
processor apparatus and more particularly to digital
microprocessor apparatus using MOS (metaboxide
semiconductor) LSI (large scale integration) technol'
ogy. While the preferred embodiments are described
with respect to an MOS LSI microprocessor, it will be
understood by those of ordinary skill in the art that the
invention is applicable generally to digital processing.
A microprocessor system typically includes a central

processor unit (CPU), memory subsystem and input
/ output subsystem to permit the system to communicate
with the outside world.
More detailed descriptions of prior art microproces

sors are found in “Microprocessor,” McGraw—Hi1l Year
book of Science and Technoloy 1974, McGraw-Hill,
Inc., New York, 1974, pp. 272—275; “Components: mi
croprocessors galore,” IEEE Spectrum, January, 1976,
pp. 50-56; “Self-contained microcomputers ease system
implementation," IEEE Spectrum, December, 1974, p.
53; and “Computer Interfacing: Anatomy of a Mi
crocomputer,” Computer Design. February 1976, pp.
129,130. All of the above citations are hereby incorpo
rated by reference.

SUMMARY OF THE INVENTION

According to one aspect of the present invention,
briefly, the CPU includes a special reset function so that
a single CPU can be employed to handle both the user
(or emulator) and monitor (or integrator) functions in a
microprocessor product development system. Prior art
development systems have included two or more CPU’s
and associated logic and memory space to permit this
function. With the present special reset function the
CPU only resets the program counter when the system
switches to the monitor mode, and an external register
holds the last user address (program counter), thus pre
serving the program counter contents. The same CPU
input that receives the normal reset also receives the
special reset, thus requiring no additional pins in the
case of a CPU contained in an LSI chip.
The various advantages and details of the present

invention will be better appreciated as the accompany
ing detailed description and accompanying drawings
are read and understood.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a typical central proces
sor unit (CPU) used in digital processing.

FIG. 2 is an exemplary arrangement of the register
con?guration of a CPU according to one embodiment
of the present invention.
FIG. 3 is an exemplary arrangement of a minimum

computer system.
FIG. 4 is an exemplary arrangement of memory

blocks forming a portion of a computer system.
FIG. 5 is an exemplary basic timing diagram of a

CPU according to one embodiment of the present in
vention.

5

15

20

25

30

35

45

55

65

2
FIG. 6 is a block diagram of a prior art microproces

sor hardware/software development system.
FIG. 7 is a block diagram of the ICE block of FIG. 6.
FIG. 8 is a diagram showing the organization of the

memory of the system of FIG. 6.
FIG. 9 is a block diagram showing the microproces

sor hardware/software development system embody
ing the present invention.
FIG. 10 is a timing diagram useful in understanding

the special reset function according to the present in
vention.
FIG. 11 is a block diagram showing the generation

and recognition circuitry for the special reset signal.
FIG. 12A is a block diagram showing the memory

organization in the monitor mode of the present inven
tion.

FIG. 12B is a block diagram showing the memory
organization in the user mode of the present invention.
FIG. 13 is a block diagram showing the external

program counter register for use in the present inven
tion.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A basic element related to the present invention is the
central processor unit (CPU), referred to herein occa
sionally as the “Zilog 2-80 CPU”, the designation
under which it is to be sold.
The term “microcomputer" has been used to describe

virtually every type of small computing device de
signed within the last few years. This term has been
applied to everything from simple “microprogrammed"
controllers constructed out of TTL MSI up to low end
minicomputers with a portion of the CPU constructed
out of TTL LSI “bit slices." However, the major im
pact of the LSI technology within the last few years has
been with MOS LSI. With this technology, it is possible
to fabricate complete and very powerful computer sys
tems with only a few MOS LSI components.
The Zilog Z-80 family of components is a signi?cant

advancement in the state-of-the art of microcomputers.
These components can be con?gured with any type of
standard semiconductor memory to generate computer
systems with an extremely wide range of capabilities.
For example, as few as two LSI circuits and three stan
dard TTL MSI packages can be combined to form a
simple controller. With additional memory and I/O
devices a computer can be constructed with capabilities
that only a minicomputer could previously deliver. This
wide range of computational power allows standard
modules to be constructed by a user that can satisfy the
requirements of an extremely wide range of applica
tions.

The major reason for MOS LSI domination of the
microcomputer market is the low cost of these few LSI
components. For example, MOS LSI microcomputers
have already replaced TTL logic in such applications as
terminal controllers, peripheral device controllers, traf
?c signal controllers, point of sale terminals, intelligent
terminals and test systems. In fact the MOS LSI mi
crocomputer is ?nding its way into almost every prod
uct that now uses electronics and it is even replacing
many mechanical systems such as weight scales and
automobile controls.
The MOS LSI microcomputer market is already well

established and new products using them are being
developed at an extraordinary rate. The Zilog Z-SO

4,486, 827
3

component set has been designed to ?t into this market
through the following factors:

1. The 2-80 is fully software compatible with the
popular 8080A CPU offered from several sources.
Existing designs can be easily converted to include
the 2-80 as a superior alternative.

2. The 2-80 component set is superior in both soft
ware and hardware capabilities to any other mi
crocomputer system on the market. These capabili
ties provide the user with signi?cantly lower hard
ware and software development costs while also
allowing him to offer additional features in his
system.

3. A complete product line including full software
support with strong emphasis on high level lan
guages and a disk-based development system with
advanced real-time debug capabilities is offered to
enable the user to easily develop new products.

Microcomputer systems are extremely simple to con
struct using Z-80 components. Any such system consists
of three parts:

1. CPU (Central Processing Unit)
2. Memory
3. Interface Circuits to peripheral devices

The CPU is the heart of the system. Its function is to
obtain instructions from the memory and perform the
desired operations. The memory is used to contain in
structions and in most cases data that is to be processed.
For example, a typical instruction sequence may be to
read data from a speci?c peripheral device, store it in a
location in memory, check the parity and write it out to
another peripheral device. Note that the Zilog compo
nent set includes the CPU and various general purpose
I/O device controllers, while a wide range of memory
devices may be used from any source. Thus, all required
components can be connected together in a very simple
manner with virtually no other external logic. The
user’s effort then becomes primarily one of software
development. That is, the user can concentrate on de
scribing his problem and translating it into a series of
instructions that can be loaded into the microcomputer
memory. Zilog is dedicated to making this step of soft
ware generation as simple as possible. A good example
of this is our assembly language in which a simple mne
monic is used to represent every instruction that the
CPU can perform. This language is self documenting in
such a way that from the mnemonic the user can under
stand exactly what the instruction is doing without
constantly checking back to a complex cross listing.

FIG. 1 shows a block diagram of the CPU, showing
all of its major elements (digital devices).

CPU REGISTERS

The 2-80 CPU contains 208 bits of R/W memory
that are accessible to the programmer. FIG. 2 illustrates
how this memory is con?gured into eighteen 8-bit regis
ters and four l6-bit registers. All Z-80registers are im
plemented using static RAM. The registers include two
sets of six general purpose registers that may be used
individually as 8-bit registers or in pairs as 16-bit regis
ters. These are also two sets of accumulator and flag
registers.
Special Purpose Registers

l. Program Counter (PC). The program counter
holds the l6-bit address of the current instruction
being fetched from memory. The PC is automati
cally incremented after its contents have been
transferred to the address lines. When a program

0

5

25

30

45

60

4
jump occurs the new value is automatically placed
in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the
l6-bit address of the current top of a stack located
anywhere in external system RAM memory. The
external stack memory is organized as a last-in
?rst-out (LIFO) ?le. Data can be pushed onto the
stack from speci?c CPU registers or popped off of
the stack into speci?c CPU registers through the
execution of PUSII and POP instructions. The data
popped from the stack is always the last data
pushed onto it. The stack allows simple implemen
tation of multiple level. interrupts, unlimited sub
routine nesting and simpli?cation of many types of
data manipulation.

3. Two Index Registers (IX & IY). The two indepen
dent index registers hold a 16-bit base address that
is used in indexed addressing modes. In this mode,
an index registers is used as a base to point to a
region in memory from which data is to be stored
or retrieved. An additional byte is included in in
dexed instructions to specify a displacement from
this base. This displacement is speci?ed as a two’s
complement signed integer. This mode of address
ing greatly simpli?es many types of programs,
especially where tables of data are used.

. Interrupt Page Address Register (I). The Z-SO
CPU can be operated in a mode where an indirect
call to any memory location can be achieved in
response to an interrupt. The I Register is used for
this purpose to store the high order 8-bits of the
indirect address while the interrupting device pro
vides the lower 8-bits of the address. This feature
allows interrupt routines to be dynamically located
anywhere in memory with absolute minimal access
time to the routine.

5. Memory Refresh Register (R). The Z-SO CPU
contains a memory refresh counter to enable dy
namic memories to be used with the same ease as
static memories. This 7-bit register is automatically
incremented after each instruction fetch. The data
in the refresh counter is sent out on the lower por
tion of the address bus along with a refresh control
signal while the CPU is decoding and executing the
fetched instruction. This mode of refresh is totally
transparent to the programmer and does not slow
down the CPU operation. The programmer can
load the R register for testing purposes, but this
register is normally not used by the programmer.

Accumulator and Flag Registers
The CPU includes two independent 8-bit accumula

tors and associated 8-bit ?ag registers. The accumulator
holds the results of 8-bit arithmetic or logical operations
while the ?ag register indicates speci?c conditions for 8
or l6-bit operations, such as indicating whether or not
the result of an operation is equal to zero. The program
mer selects the accumulator and flag pair that he wishes
to work with with a single exchange instruction so that
he may easily work with either pair.
General Purpose Registers
There are two matched sets of general purpose regis

ters, each set containing six 8-bit registers that may be
used individually as 23-bit registers or as l6-bit register
pairs by the programmer. One set is called BC, DE and
III while the complementary set is called BC’, DE’ and
III’. At any one time the programmer can select either
set of registers to work with through a single exchange
command for the entire set. In systems where last inter

4,486,827
5

rupt response is required, one set of general purpose
registers and an accumulator/flag register may be re
served for handling this very last routine. Only a simple
exchange commands need be executed to go between
the routines. This greatly reduces interrupt service time
by eliminating the requirement for saving and retrieving
register contents in the external stack during interrupt
or subroutine processing. These general purpose regis
ters are used for a wide range of applications by the
programmer. They also simplify programming, espe
cially in ROM based systems where little external
read/write memory is available.

ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the
CPU are executed in the ALU. Internally the ALU
communicates with the registers and the external data
bus on the internal data bus. The type of functions per
formed by the ALU include:

Add Left or right shifts or rotates (arithmetic
and logical

Subtract Increment
Logical AND Decrement
Logical 0R Set bit
Logical Exclusive OR Reset bit
Compare Test bit

INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is
placed in the instruction register and decoded. The
control sections performs this function and then gener
ates and supplies all of the control signals necessary to
read or write data from or to the registers, control the
ALU and provide all required external control signals.

FIG. 3 shows a block diagram of a very simple digital
processor system using the CPU. In a practical system
the following ?ve elements are required: power supply,
oscillator (a source of clock signals), memory devices,
[/0 circuits, and the CPU.

Since the Z80-CPU only requires a single 5 volt sup
ply, most small systems can be implemented using only
this single supply.
The oscillator can be very simple since the only re

quirement is that it be a 5 volt square wave. For systems
not running at full speed, a simple RC oscillator can be
used. When the CPU is operated near the highest possi
ble frequency, a crystal oscillator is generally required
because the system timing will not tolerate the drift or
jitter that an RC network will generate. A crystal oscil
lator can be made from inverters and a few discrete
components or monolithic circuits are widely available.
The external memory can be any mixture of standard

RAM, ROM, or PROM. In this simple example we
have shown a single 8K bit ROM (1K bytes) being
utilized as the entire memory system. For this example
we have assumed that the 2-80 internal register con?g
uration contains sufficient Read/Write storage so that
external RAM memory is not required.

Every computer system requires I/O circuits to
allow it to interface to the “read world.” In this simple
example it is assumed that the output is an 8 bit control
vector and the input is an 8 bit status word. The input
data could be gated onto the data bus using any stan
dard tri-state driver while the output data could be
latched with any type of standard TTL latch. For this
example we have used a ZSO-PIO for the I/O circuit.
This single circuit attaches to the data bus as shown and

5

15

20

25

30

45

50

55

65

6
provides the required 16 bits of TTL compatible I/O.
(Refer to the ZSO‘PIO manual for details on the opera
tion of this circuit.) Notice in this example that with
only three LSI circuits, a simple oscillator and a single
5 volt power supply, a powerful computer has been
implemented.

ADDING RAM

Most computer systems require some amount of ex
ternal Read/W rite memory for data storage and to
implement a “stack.” FIG. 4 illustrates how 256 bytes of
static memory can be added to the previous example. In
this example the memory space is assumed to be orga
nized as follows:

Address
OOOOl-l

l K bytes
ROM

D3FFH
0400B 256 bytes

RAM

In this diagram the address space is described in hex
idecimal notation. For this example, address bit A10
separates the ROM space from the RAM space so that
it can be used for the chip select function. For larger
amounts of external ROM or RAM, a simple TTL de
coder will be required to form the chip selects.

CPU TIMING

The 2-8!) CPU executes instructions by stepping
through a very precise set of a few basic operations.
These include:
Memory read or write
l/O device read or write
Interrupt acknowledge

All instructions are merely a series of these basic opera
tions. Each of these basic operations can take from three
to six clock periods to complete or they can be length
ened to synchronize the CPU to the speed of external
devices. The basic clock periods are referred to as T
cycles and the basic operations are referred to as M (for
machine) cycles. FIG. 5 illustrates how a typical in
struction will be merely a series of speci?c M and T
cycles. Notice that this instruction consists of three
machine cycles (M1, M2 and M3). The ?rst machine
cycle of any instruction is a fetch cycle which is four,
?ve or six T cycles long (unless lengthened by the wait
signal which will be fully described in the next section).
The fetch cycle (M1) is used to fetch the OP code of the
next instruction to be executed. Subsequent machine
cycles move data between the CPU and memory or I/O
devices and they may have anywhere from three to ?ve
T cycles (again they may be lengthened by wait states
to synchronize the external devices to the CPU). The
following paragraphs describe the timing which occurs
within any of the basic machine cycles. In section 10,
the exact timing for each instruction is speci?ed.
The CPU of the present invention is particularly

useful in a hardware/software development system.
Such systems, typically employing microprocessors,
have heretofore required two or more CPU’s thus re
quiring additional logic and memory space at greatly
added cost.

4,486,827
7

One such prior art microprocessor development sys
tem is shown in FIG. 6, wherein the block labeled ICE
contains a second CPU. FIG. 7 shows the ICE block in
greater detail. The additional memory space required
by a second CPU is apparent from the memory alloca
tion of such a system in FIG. 8.
The prior art system of FIGS. 6, 7 and 8 is described

by its manufacturer, Intel, as follows.
The Intellec Microcomputer Development System

(MDS) has been designed to satisfy the combined needs
of the prototype equipment programmer/engineer. The
system can compose programs, emulate the central
processor (CPU), memory, and input/output (I/O) sub
systems of a product in development, and automate
hardware/software debugging operations. The pro
gramer needs no separate software environment, such
as simulation with a time-shared computer; the engineer
needs no laboratory model equipped with specially
built diagnostic aids. Product designers can debug their
systems with prototypes that operate in the same envi
ronment as the production model.
The Intellec MDS can be adapted to work with a

variety of microprocessors and in actuality consists of
two systems: a basic facility that controls a general-pur
pose set of development resources and a specialized
In-Circuit Emulator (ICE) that tailors programming,
emulation, and diagnostic functions to a particular class
of microcomputers. A block diagram of the Intellec
MDS with an ICE module installed is shown in FIG. 6.
As can be seen from this ?gure, the Intellec MDS is

a multiprocessor-oriented system with a variety of bus
organized subsystems including:
A general-purpose Intel 8080 CPU module, which

supervises the overall system;
A main memory with a capacity of 65,536 8-bit bytes

of random-access (RAM) and read-only (ROM)
memory;

Interface subsystems and software to control six stan
dard peripheral devices (including the Universal
Programmable-ROM (PROM) Processor).

A diskette (floppy disk) with operating-system soft
ware;

Direct-memory-access (DMA) channels;
A bus-oriented logic subsystem designed to organize

the data transfer and interruption activities of as
many as nine modules (such as the CPU, DMA,
and ICE);

A ROM-resident system monitor;
RAM-resident character-oriented text editor and

8080 macroassembler.
IN-CIRCUIT EMULATOR '

The ICE module permits a user to build his system
with no auxiliary hardware or software test equipment
requirement. Instead, he uses the Intellec MDS to con
trol and monitor the execution of his system. Thus his
prototype system also becomes his production system.
To the user’s system, the In-Circuit Emulator looks

like a replacement for his CPU chip. Specifically, the
ICE-80 module looks like a replacement for a user’s
8080 CPU chip. It plugs into the user's system in place
of his CPU and performs all the functions of that CPU.
The other end of the ICE module connects to the Intel
lec MDS where it interacts with the MDS software.

ICE-80 allows the user to test his system even though
it is not completely built. Some or all of the storage of
the user’s system can be contained in Intellec MDS
memory during system development. Similarly, some or
all of the user’s periherals can be the standard peripher

25

30

35

45

50

55

65

8
als attached to the MDS system. Whenever the emula
tor system makes a memory or [/0 access, it ?rst con
sults an address map to determine the physical location
of a logical memory address or I/O port.

Ice-80 can also be used as a diagnostic tool with the
MDS even when the user plans to build no hardware.
For example, it can be used to debug software residing
in the MDS.
A block diagram of the ICE-80 hardware is shown in

FIG. 7. Note that ICE-80 is a second processor in the
MDS. Both processors operate simultaneously and
communicate with each other over the MDS bus shown
in this ?gure. ICE-80 communicates with the user’s
system by connecting directly into the user's system bus
in place of the user's 8080 CPU (via the 40-pin socket).
Finally, the emulator communicates with its own sys
tem components over the internal ICE-80 bus.
The ICE-80 module is a complete microcomputer sys
tem on two cards as shown in FIG. 7. The processor
card has four primary functions:

Housing the 8080 chip that replaces the user's CPU;
Controlling the user and MDS buses;
Address mapping;
Starting/stopping the emulation process.

The trace card of the ICE-80 module also performs four
main functions:

Accepting commands from the MDS;
Controlling internal operation of the ICE-80;
Collecting data for each machine cycle of an emula

tion for later transfer to a control block in MDS
memory;

Comparator control for breaking emulation under
specific conditions.

The ICE-80's 8080 CPU performs three tasks alter
nately. One task is to execute the functions of the user’s
system (emulation) in real-time mode; the second allows
emulation of the user’s system in single or multiple-step
mode; the third is to communicate with the MDS moni
tor (interrogation). ICE-80 switches from emulation to
interrogation whenever a breakpoint condition is satis
fled.
Whenever a transition occurs from the emulation to

the interrogation function, the state of the user's system
must be saved (in an area of MDS memory called a
control block) and then restored on the opposite transi
tion. Data in the control block remains available to the
ICE-80 software driver (ICESOSD). The run emulation
control logic on the ICE-80 processor card directs these
transitions.
When the emulation task is being performed, the

ICE-80 CPU is executing the user’s program. During
interrogation, a program stored in the 1K ROM on the
ICE-80 trace card controls ICE-80 actions.

Finally, while the ICE-80 system is emulating the
user’s system, it is also circularly storing information
describing each cycle it executes into the trace card's
256-byte RAM. At the time ICE-80 switches to the
interrogation task, this RAM contains a complete de
scription of the last 44 cycles executed during emula
tion. When the switch occurs, the RAM's contents are
transferred to the control block set up in MDS memory.
The user can not only obtain complete details about
these 44 cycles during interrogation. but can also re
quest information about logic levels on 8080 control
lines, on the amount of time elapsed during the last
emulation, and can read from or write into any register,
memory address. I/O port, or indicator flag in his sys
tem.

4,486,827
9

The user interacts with ICE-80 through a command
language described in detail in Section 3. The ICE-80
software driver (ICE80SD) recognizes a set of debug
commands from the user and in turn issues instructions
to the ICE-80 hardware. The user’s commands consist
of English-like sentences comparable to high-level pro
gramming language statements. The commands provide
for accessing the machine both on a high level (for
debugging PL/M and assembly language programs)
and on the actual machine level (for troubleshooting the
user’s hardware).

ADDRESS MAPPING

The address map component on the ICE-BO’s proces
sor card speci?es the location of user memory and I/O
space in the user’s program.

Memory Usage
Memory Mapping
The memory for the user’s system can be in the de

sign system itself or in MDS memory, or split between
the two. Logical addresses in the user’s program range
from 0-65,535 and are partitioned into 16 logical blocks
of 4K bytes. Each logical block can physically reside in
the user’s system or in any unused 4K block of memory
in the MDS. If the block is physically located in the
MDS, the address map speci?es which 4K block of
random-access memory in the MDS corresponds to this
logical block.
Memory Availability
When specifying the physical location of each logical

memory block, the user should be aware of the memory
requirements of the MDS monitor and ICESOSD (FIG.
1-3). ICEBOSD uses the ?rst 12K of MDS memory
(three logical blocks). The MDS monitor reserves the
upper 2K memory locations for a 2048 by 8-bit ROM
containing the monitor itself. The MDS monitor and
ICE80SD also reserve the 318 locations at the top of the
uppermost contiguous block of RAM.
The user's symbol table, if any, is loaded just below

the 3l8-location reserved area. The length of this sym
bol table is variable, but the ?rst location available to
the user below this area can be found in a pseudo double
register named UPPERLIMIT.
The main point for the user to realize is that his high

memory requirments can con?ict with MDS monitor
requirements and that he must map his memory accord
ingly.
[/0 Port Mapping
The logical I/O ports employed by the user’s system

can be physically located in his system or in the MDS,
or split between them. Logical I/O ports range from 0
to 255 and are partitioned into 16 blocks of 16 ports
each.

PRODUCT DEVELOPMENT SEQUENCE
The interaction between the designer of a new prod

uct, the Intellec MDS, and the ICE-80 module can be
summarized in the following typical productdevelop
ment sequence:

1. User completes system-design speci?cation and
initial software/hardware design.

2. User’s software is written in 8080 assembly lan
guage or PL/M and assembled/compiled on the
MDS or other system.

3. Peripherals are assigned to MDS or user’s equip
ment using MDS monitor ASSIGN command.

1O

20

30

45

SD

55

65

10
4. ICE-80 umbilical cable is attached to prototype

equipment. ICEBOSD is loaded from input device
(logical device READER) into user's memory or
MDS memory.

5. Prototype is exercised with the user's software and
MDS/ICE commands.

6. Memory, I/O, and peripheral hardware are added
to prototype system as it is debugged. Correspond
ing resource is “disconnected" from MDS.

7. ICE-80 umbilical cable is unplugged and replaced
with user's 8080 CPU chip.

The user has never had to provide extraneous hardware
or software support in the prototype to perform system
diagnosis. Using MDS and ICE, the system designer
can take advantage of test facilities never before avail
able in such easily-accessible form.
The hardware/software development system in

which the CPU of the present invention is useful is
similar to that of the prior art, except that only a single
CPU is required. FIG. 9 shows a block diagram of the
present hardware/software development system.

Z-8O HARDWARE/SOFTWARE
DEVELOPMENT SYSTEM

Introduction
The Zilog 2-80 Development System is a turn-key

unit designed to support all activities associated with
the creation of microprocessor based products. The
floppy disk operating system, in combination with the
sophisticated Real-Time Debug Module, provides per
formance and versatility which exceed any other mi
crocomputer development system on the market. The
use of the system allows for quicker response to market
demands, less time to fully operational hardware and
discovery of latent hardware or software problems
before a product goes to the ?eld.
The development system is built around the powerful

Z-80 single chip microprocessor which is ideally suited
to the multitask operational requirement of a develop
ment system. A single 2-80 CPU is used for both the
user’s hardware (User Mode) and the System resident
monitor (Monitor Mode). The unique architecture of
the 2-80 CPU allows the single processor to be shared
between these two modes and yet perform every func
tion that competitive designs offer while requiring 2 or
3 processors.

In the Monitor Mode the System performs as a stan
dalone development tool wherein software programs
can be entered into memory, edited, assembled and
loaded for execution. This entire process is quickly
performed under control of the resident disk operating
system and a full complement of high speed peripheral
devices through simple commands from the user's ter
minal.

In the User Mode all system memory and peripheral
elements are dedicated to the user’s own unique system,
where control is switched from the ROM resident mon
itor to the RAM resident user’s program and any exter
nal control logic if it is required. The use of RAM mem
ory for the user’s program eliminates the costly and
time-consuming requirement to program PROMs.
A major feature of the 2-80 is its powerful debug

module. This module allows User Mode system transac
tions that are designated pertinent by the user to be
stored in real time into an independent memory. The
user can also specify that any type of system transaction
can suspend user operation and cause the system to
re-enter the Monitor Mode. The complete record of all

4,486,827
11

transactions preceding this suspension that were re
corded in the independent memory can then be conve
niently displayed on the system terminal or listed on the
line printer. This ability to freeze real-time event se
quences and then to review selected events in detail
permit the user to accomplish product design and hard
ware/software debugging in the shortest possible time.
Without this feature it is extremely difficult to ?nd
errors in programs or hardware where the user can not
single step through a program due to real time 1/0
restrictions.
The standard Development System includes the fol

lowing elements:
Z-80 CPU Card
16K Bytes of RAM Memory Expandable to 60K

Bytes
4K Bytes of ROM/RAM Monitor Software
Real-Time Debug Module
Floppy Disk Subsystem
CRT Terminal and Line Printer or Hardcopy Termi

nal
Standard [/0 Ports for other High Speed Peripherals

are available as an option
Complete Development Software Package including:

Z-BO Assembler Z-SO Editor
Z-80 Disk Operating System
2-80 File Maintenance System
2-80 Debug

Processor Module
The Processor Module is a single card containing all

elements necessary to function as a stand-alone com
puter. A serial I/O port is provided for operation of a
teletype or CRT terminal in conjunction with up to 4K
bytes of ROM resident monitor software and associated
scratchpad RAM.
The ROM resident monitor software enables the user

to have total operational control over the System. All
system software loading is accomplished directly from
the ?oppy disk under control of the monitor software.
The need for time-consuming and inconvenient paper
tape equipment has been totally eliminated in the Zilog
system.

In the User Mode, System peripherals can be ac
cessed using the monitor software drivers. This is ac
complished by a unique memory overlay feature which
allows the users’ programs and the monitor to co-exist
in the same memory locations.
Real Time Debug Module
The Zilog Development System real-time debugging

capability enables the user to easily locate and correct
any hardware or software design errors. With this mod—
ule, the user can monitor the operation of this software
in real time and also set hardware and software break
points to stop the program on any data, address or con
trol bit pattern. Once stopped, the status of any internal
CPU register, flag, memory location or I/O port may
be monitored or changed prior to continuing the pro
gram from that point.
The Real-Time Debug Module contains a high speed

memory which stores user speci?ed system transactions
for the most recent 256 events preceding a breakpoint.
At the speci?ed breakpoint, the complete history of the
system for the previously executed 256 events can be
dynamically traced on the system terminal. The type of
history that is recorded is speci?ed by the user. For
example, all l/O writes, [/0 reads, memory writes,
memory reads, interrupts, or any combination of these
may be included. For each such transaction, the entire

20

25

30

35

40

45

65

12
contents of the data, address and control busses are
stored in the memory for subsequent retrieval and dis
play on the terminal.
An Operations Monitor is also provided to alert the

user or monitor software when a program stall occurs
(i.e., if the program is not executing properly or a Halt
occurs). This feature is extremely valuable when pro
gram execution is dependent on the completion of exter
nal events. If a realtime event should fail to occur, the
program can jump ahead, based on the status of the
Operations Monitor, and warn the user that a manual
corrective action is required.
System Memory
The System uses standard, readily available, 4K

RAM circuits con?gured in 4K byte increments up to a
total of 60K bytes as required by the user. System mem
ory is shared between the two modes of operation, the
Monitor Mode and the User Mode.

In the Monitor Mode, programs are entered, edited,
assembled and loaded directly into RAM memory for
immediate execution without the additional cost and
time delays associated with programming PROMs.

In the User Mode, RAM memory contains the users
software and the user has complete control over the
system peripherals as well as full control of the system
CPU.
The system is con?gured so that external ROM,

RAM or PROM memory can be used in any combina
tion and at any time in place of, or in conjunction with,
the standard system RAM memory. This feature allows
the the user to substitute his own ROM or PROM mem
ory after the hardware con?guration and software rou
tines are ?nalized and user memory testing is required.
Floppy Disk Controller

This card interfaces up to four ?oppy disk drives in
support of the 2-80 disk operating software. During
initial power-up or manual system restart, programs are
automatically loaded from the diskette. The ROM
based monitor software contains the floppy disk soft
ware driver. Protection against data errors is provided
through the use of a read before write operation as well
as hardware CRC generation and parity checking.
Universal Parallel I/O Module

This module contains four Zilog parallel [/0 control
lers (ZSO-PIO) which can control a wide range of paral
lel interface peripherals. The card is universal in that
bidirectional data transfer and any combination of status
and control lines can be accommodated under software
control. It is used as an interface to the following op
tional system peripherals: Line Printer; Paper Tape
Punch and Reader; PROM Programmer; Electronic
Typewriter.
System Control Module

This card contains all elements necessary to share the
system between the User and Monitor Modes. A stan
dard hardware interconnection port and cable are also
provided for simple interface between the user’s hard
ware and the System. All lines are fully buffered and
provide TTL compatible signal levels for connection to
any external equipment or control logic, any portion of
the user’s memory system or even the user’s own unique
CPU card. The use of external memory and CPU cards
is normally made only after all software development is
complete and the user is merely checking the ?nal de
sign aspects of his system elements.

Also located on this card is the Counter Timer Cir‘
cuit which is a Zilog component containing a sophisti
cated multichannel timing network. Up to four channels

