
Virtualization of the PC architecture components 

 
Legacy PC components are virtualized by their interfaces with the IO, MMIO and interrupt subsystems. 
IO instructions ([rep]in/ins/out/outs) are trapped by the VMX framework and delegated to their respective handlers 

(devices) in the vmx driver. 
 
Memory-mapped IOs are complete regions of CPU physical address mapping, always page-aligned and multiple of 
page size (4K). They are also registered and routed to the respective handlers. 
 
A virtual device driver may elect to send an interrupt into the guest. 

 

Legacy devices resource map 

 
8259A PIC, Programmable Interrupt Controller 
 io = 0x20, 0x21 (master) 

 io = 0xA0, 0xA1 (slave) 
8253 PIT, Programmable Interval Timer 
 io = 0x40 – 0x43 (primary) + IRQ 0 

 io = 0x48 – 0x4B (secondary)      NMI?? 
8237A DMA, Direct Memory Access controller 
 io = 0x08 – 0x0F (primary)    ??? 
 io = 0xD0 – 0xDE (secondary)    ??? 
8255 PPE, Programmable Peripheral Interface, PS/2 Keyboard and Mouse 
 io = 0x60 (keyboard + mouse) 

 io = 0x61 (system speaker) 
 io = 0x62      ??? 
 io = 0x64 (keyboard + mouse) 
System CMOS + RTC, real-time clock 
 io = 0x70 – 0x71 
16550 UART, Serial communication ports 

 io = 0x3F8 – 0x3FF (com1) 

 io = 0x2F8 – 0x2FF (com2) 
 io = 0x3E8 – 0x3EF (com3) 
 io = 0x2E8 – 0x2EF (com4) 
 sends IRQ: 3, 4 
 mapped to a physical serial port, pipe, output log or a viewer 
Parallel interface chip 
 io = 0x378 – 0x37F (lpt1) 

 io = 0x278 – 0x27F (lpt2) 
 mapped to a physical parallel port, pipe, printer or output log or a viewer 
Floppy controller 
 io = 0x3F0 – 0x3FF (A:) 
 io = 0x370 – 0x37F (B:) 
 uses DMA 2 and IRQ 6 
 mapped to a physical floppy drive, file image or an application container (what is that?? ) 

IDE HDD 

 io = 0x1F0 – 0x1F7 
 io = 0x3F6 – 0x3F7 (drive 0:0, master + slave) 
 io = 0x170 – 0x177 
 io = 0x376 – 0x377 (drive 1:0, master + slave) 
 uses IRQ 14 

 mapped to a physical disk drive, file image, container or a host directory  
VGA 
 mmio = A0000 – BFFFF (display frame buffer, vga) 
 io = 0x3C0 – 0x3DF 
 io = 0x3B0 – 0x3BB 
System BIOS image 

 memio = 0xF000 – 0xFFFF 
Video BIOS image 
 memio = 0xC000 – 0xCFFF  
 



 

Virtualization of the CPU 
 
Upon the reset, the CPU starts at F000:FFF0 (0xFFFF0). 
  
Since the real mode is very similar to the v86 mode, we start operation in v86 mode. The following is a list of 

instructions that need special consideration when running under the VMM. 
 
System instructions (which tend to appear in operating system software) such as ARPL, are not listed unless their 
behavior in v86 mode differs from behavior in real mode, in which case they need to be emulated (example for that?) 
 

clts GP(0)  *1   

hlt VMX trap   

in/ins/out/outs VMX trap   

lgdt/lidt GP(0)  use VMCALL 

lldt #UD  use VMCALL 

lmsw VMX trap   

ltr #UD  use VMCALL 

mov to CR VMX trap   

mov from CR VMX shadow   

popf    

pushf    

cli/sti Use vme86  use VMCALL 

sgdt  problem  

sidt  problem  

sldt #UD  use VMCALL 

smsw VMX shadow   

str #UD  use VMCALL 

verr/verw #UD  use VMCALL 

lar/lsl #UD  use VMCALL 

lds/les/lfs/lgs/lss    

mov to SEG    

mov from SEG    

push SEG    

pop SEG    

sysenter/sysexit    

iret    

wait    

enter/leave    

callf/jmpf    

int/into/bounds    

UD    

cupid VMX trap   

invlpg VMX trap   

monitor/mwait VMX trap   

rdmsr/wrmsr GP(0)  use VMCALL 

 

*1 – These instructions can be executed only with a privilege level of 0, so they will GPF when executed within a v86 
mode, and then can be emulated. 
 
IN/OUT Instructions: 
We set “activate IO bitmap” to 0 and “unconditional IO exiting” to 1, so any I/O will cause VM Exit. We don’t need to 
use the IO Permission bitmap in the TSS. Note that we still need to set the address in the TSS since it is used to 

locate Software Interrupt Redirection Bitmap. 
 
Software interrupts: int n, into, bounds instructions: 
We don’t need to handle software interrupts that are generated within the guest “real” mode code. We want them to 
be automatically reflected using real-mode IDT. Note that the first 32 interrupts are also used for CPU system use, 
which we do want to capture. However, we use VMX Exception Bitmap set to all 1’s to force all CPU exceptions 
(Faults/Traps/Aborts) to unconditionally cause VM Exit. This way the Interrupt redirection bitmap is simply used to 

redirect all software interrupts back to the vm86 code. 
 



We set the VME mode and use Software Interrupt Redirection Bitmap to indicate that an interrupt should be redirected 
back to the real-mode IDT located at linear address 0, by clearing the corresponding bit. We also set the IOPL to 0. 
This way our bitmap redirects interrupts accordingly, and also it handles VIF and VIP flags to support maskable 
hardware interrupts. 
 
A special case is int3 (0xCC) where interrupt redirection does not happen when in VME mode; the interrupt is always 
handled by a protected-mode handler.  
 

Special handling when changing modes 

 
We define a mode changing section of the code as that within which a guest software switches from real mode into 
protected mode and back. Within that we can find most critical sections of the code in within which that transition 
happens at various instruction boundary. 

Switching from real mode to protected mode 

 
Guest executes in v86 mode and normally loads system registers such are GDT and IDT before turning on the 

protected mode by setting a bit in CR0 register. The critical section starts at the time of setting CR0.PE to the 
instruction that actually reloads the CS descriptor, at which point we can start using the guest selectors and VMX 
framework. 
 
A potential problem can arise if a guest loads one of its data selectors from GDT. Since the code is still operating in 
v86 mode, any actual use of such selector would be invalid since the addressing is still done using the legacy 
segment:offset model. 

 
In real mode, we trap on any attempt to load system registers (GDT/IDT/TR) and simply save the effective values 
that the guest code would want to load. This will be handled by the #GP (lgdt/lidt) or #UD (lldt/ltr) handlers. 
 
At the point at which protected mode is enabled (application sets CR0.PE), VMX traps and we initiate single-step 
execution by the v86 monitor code. This single step will also quickly decode instruction to detect one which loads the 
CS by far jump, far call or far return. At that point we switch to the real VMX operation. 

 

This single step engine can also decode instructions that load data selectors and flag them. We can see how often that 
actually happens and then decide what to do. 

Switching from protected mode back to real mode 

 
Guest executes under a VMX framework within full protected mode environment. The critical section starts when it 
disables protected mode by clearing CR0.PE. We trap this using a VMX trap and initiate mode transition. 
 

We switch to v86 mode and single step instructions, quickly decoding them until we detect one that reloads CS by 
using a far jump, far call or far return. At that point we continue running under the v86 monitor. 
 
The main problem is guest using data selectors which still have protected mode base and limit active. Executing them 
in v86 mode would be incorrect. The single step engine can decode and flag such instructions, then we will see how 
often they happen and what to do about that. 

 
In the meantime, we will reload data segments with the segment form of the base address that each of those 
registers had at the time PE is turned off. This will ensure correct operation for at least data access within 64K limit. 
 

Virtualization of the VGA subsystem 
 
A standard VGA-class adapter is presented to the guest VM. It provides IO and memory-mapped frame buffer 
interface. The code that virtualizes it is split into low level layer, implemented in the VMX driver, and a presentation 
layer, implemented in the application. 

 
VMX layer traps VGA IO accesses and maintains a “true register value” data structure which has the shared mapping 
with the application. The 128K frame buffer region mapped within the guest addresses 0xA0000-0xBFFFF is also 
shared with the application. 
 



In addition, the shared data structure includes various control semaphores to signal the memory write to a FB region 
(so the app can update display only when it gets modified). 
 
The application runs a thread that checks for updates and renders the frame buffer in a proper format. 

 
Idea for future implementation: SVGA adapter with a custom VBIOS which would simply call into the VMX for fast 
INT10 operations. 
 
 

Implementation Details 

Host application: vmxSim.exe 

 
The kernel system tick resolution is 10ms by default (on most systems). We need to set it to 1 ms. The application 
uses Media library to set the timer resolution. It does not revert it to what it was since some other app might start in 
the meantime (such as WinAmp) that require higher resolution. 
 

Driver allocates and locks memory for the virtual machine. At this time it does not support more guest memory than it 

can lock. This is the order of calls: 
 SetProcessWorkingSetSize(GetCurrentProcess(), <size + extra>, [2Gb, max]) 
 VirtualAlloc(<size>, MEM_RESERVE) 
 VirtualAlloc(<size>, MEM_COMMIT) 
 VirtualLock(ptr, <size>) 
 
 

 

Kernel mode device driver: vmx.sys 

 
The device driver that contains the following code:  

 VMX initialization, entry and exit handlers 
 VMCALL and interrupt handlers for simulation of vm86 run and transition states  

 Paging, virtual TLB implementation with shadow pages 
 Simulation code for all legacy PC architecture virtual devices 
 Communication with the application for extended device requests (file system, etc.) and control 
 

Driver runs VMX execution control in a separate driver thread which has a particular CPU assigned to it by using a 
“KeSetTargetProcessorDpc”. It is important to keep execution on a dedicated CPU since VMX operation depends on it. 
A call to “KeSetImportanceDpc” is used to set the DPC to “high” importance. 
 
Driver has one global (using DeviceExtension structure) and (possibly several) VM instance data structures (per 
application) maintained in the driver instance data. Global structure holds information needed for management of the 
overall VMX state. VM Instance structures are created for each Virtual Machine opened by individual instances of the 

application. VMX is always using the CPU #0, and VM entries are interleaved using the VMX scheduler. 
 
Global structure contains a pointer to a page allocated for VMXON CPU region. 
Each VM Instance structure contains a pointer to its VMCS Task memory region (page). 

 
A separate timer DPC thread (in the driver) is set to activate every OS tick (1 ms). 
 

V86 mode monitor: vmm.bin 

 
Monitor pages are mapped only when the guest is running in the real mode and during the mode transitions. In 
protected mode, they are mapped out of the address space since the effective guest code and page mappings are 
active under VMX operation. 
 
We want the VMM to be as simple as possible. In fact, we don’t want to have any code in it, just few necessary tables. 
Instead, we prefer to have all the code in the VMX device driver where it can be debugged easily. That brings some 

performance penalty, which is fine for the short duration of time while running in real mode. As soon as the guest 
turns the protected mode on, this VMM implementation changes into the VT-x framework. 



 
Offset: 0x0000 VMCALL Table  

 

VMCALL Table  

 VMCALL instruction is (0x0F,0x01,0xC1); we add another byte to make it a DWORD: 0x90C1010F. 
For 256 interrupts, we create an array of 256 calls for a total of 1024b for this table (0x400). A call will never return 
from the VMX driver; instead, we will always return into the v86 code being monitored. 
 

VMCALL_TABLE + 0x00 0x90C1010F 

VMCALL_TABLE + 0x04 0x90C1010F 

   < … > 

VMCALL_TABLE + 0xFC 0x90C1010F 

 
 

Offset: 0x0400 IDT  

 
Interrupt Descriptor Table 
 IDT is compiled to contain pre-set offsets into the VMCALL Table, with each IDT entry addressing into 
corresponding VMCALL entry. The type is 0x0E, 32-bit Interrupt Gate. (The SEL_CODE’s base address is set to the 

beginning of the VMCALL Table.) 
 

IDT[0] offset=0x00 sel=SEL_CODE, 0x08 type=0xE 

IDT[1] offset=0x04 sel=SEL_CODE, 0x08 type=0xE 

…   < … >   

IDT[255] offset=0xFC sel=SEL_CODE, 0x08 type=0xE 

 
Each IDT entry is 8 bytes long, making this table 2048 bytes in size (0x800) 
 

Offset: 0x0C00 GDT  

 
Global Descriptor Table 
 VMX Guest GDTR is loaded with the linear base address of this table. The table describes the following 
selectors used by the VMM structures:  
 SEL_NULL 0x00 (Not used, set to 0.)  

 SEL_CODE 0x08 Base=<virtual address of the VMM>, Limit=max, RPL=0 
 SEL_DATA 0x10 Base=<virtual address of the VMM>, Limit=max, RPL=0 
 SEL_TSS 0x18 Base=<virtual address of the TSS Table>, Limit=(0x8C-1), RPL=0 
Each entry is 8 bytes long, making this table 32 bytes in size (0x20). 
Before the VMM is mapped in the guest address space, the base addresses are adjusted accordingly. 
 

Offset: 0x0C20 TSS Table  

 
Task State Segment Table 
 VMX Guest Task Register (TR) is loaded with the SEL_TSS value before VM Entry. 
TSS is compiled to contain the following values: 

 

offset  

0x00  Previous Task Link 

0x04 ESP0 = offset of the supervisor’s stack top 

0x08  SS0 = SEL_DATA 

0x0C ESP1 

0x10  SS1 

0x14 ESP2 

0x18  SS2 

0x1C CR3 (PDBR) 

... EIP/EFLAGS/EAX…EDI/ES…GS 

0x60  LDT Segment Selector 

0x64 I/O Map Base Address = 0x88  T 

0x68 
32 bytes of Software Interrupt Redirection Bitmap, set to 0 

… 

0x88 0xFFFFFFFF 

 



Interrupt redirection bitmap is set to 32 bytes of zeroes to force all software interrupts occurring within the vm86 
monitored code to be redirected back to the real-mode IDT. We still deploy IDT with VMM_CALL gates to be flexible 
should we want to redirect any interrupts by using that mechanism. 
 

The total size of this structure is 140 bytes (0x8C). The SEL_TSS limit is set accordingly. The last value is simply a 
padding as we are not using IO Bitmap – any IO causes a VM Exit. 
 

Offset: 0x0CAC ESP0 – Supervisor Stack  

 
Supervisor Stack 
 The supervisor stack will be loaded with the stack frame on any software interrupt or CPU exception that we 
might end up allowing in vm86 mode. 
 
The maximum stack frame used would be formatted this way: 
 

top (from ESP0) Unused 

-0x04  v86 GS 

-0x08  v86 FS 

-0x0C  v86 DS 

-0x10  v86 ES 

-0x14  v86 SS 

-0x18 v86 ESP 

-0x1C v86 FLAGS 

-0x20  v86 CS 

-0x24 v86 EIP 

-0x28 Error Code 

 
When an interrupt is handled using the VMM IDT, the stack will be filled in, the code executed as part of the monitor 

interrupt handler will be a VMCALL which will neither push more data onto this stack nor modify it, but instead will 
cause VMX Exit which our driver will handle. 
 
The size of this structure is 44 bytes (0x2C). 
 
Ends at the offset of 0x0CD8. 

New physical page. 

 

Offset: 0x1000 PD – Page Directory Size = 4K (1 Page Frame) 

 
Page directory and page tables are set up to map 1:1 guest virtual space to what guest thinks physical frames are. 

We rely on the VMX paging framework to do the real paging. Complete range of physical memory assigned to a guest 
is mapped. Although only the first 1Mb is accessible to the real-mode code, all of it is accessible if the guest (usually 
the SBIOS) reloads a selector limit. Those instructions we simulate since they cannot be executed natively in the v86 
mode. 
 
Each PDE maps into a separate page table, mapping in the increments of 4Mb. So, for example, a guest with 256 Mb 
assigned RAM memory will use 256/4 = 64 PDE and that many separate pages of PT. 

 

Offset: 0x2000 PT – Page Tables 1 Frame for each 4Mb of RAM 

 

We map one page of PT for each 4 Mb of guest memory. Frames are mapped sequentially, starting at the frame #0 up 
to the allocated size / 4096. 

 
The VMM pages are mapped as supervisor, and the frames are from a separate page pool, not the allocated guest 
pool. They are also mapped much higher in the linear address space, at the address of 0x80000000 (2Gb) to leave 
plenty of room for mapping of up to 2 Gb of guest memory (although the practical limit is much lower.)  
 
 

 

 


